
0- *

AD-A270 551

A Comparison of Data-Parallel Algorithms
for Connected Components

DTIC John Greiner
ELECTE August 18, 1993

OCT 141993 D CMU-CS-93-191

AU
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This document has been appIoVYd
for public release and sate; it Ad_. s~iriution is unimted. , Abstract

This paper presents a pragmatic comparison of three parallel algorithms for finding connected components,
together with optimizations on these algorithms. Those being compared are two similar algorithms by
Awerbuch and Shiloach [21 and by Shiloach and Vishkin [19] and a randomized contraction algorithm by
Blelloch [7], based on algorithms by Reif [18] and Phillips [17]. Major improvements are given for the first
two which significantly reduces the super-linear component of their work complexity. An improvement is
also given for randomized algorithm, and this algorithm is shown to be the fastest of those tested. These
comparisons are presented with NESL data-parallel code as executed on a Connection Machine 2.

93-24005
9 3 10 8 159 111111lIII

This research was sponsored in part by the Defense Advanced Research Projects Agency, CSTO, under the title
"The Fox Project: Advanced Development of Systems Software", ARPA Order No. 8313, issued by ESD/AVS under
Contract No. F19628-91-C-0168, and in part by the ONR Graduate Fellowship Program.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the
U.S. Government.

.4

Keywords: Computations on discrete structures, Data-parallel languages, Connected components algo-
rithms

1. Introduction

The complexity of various PRAM algorithms has received much attention, but there has been relatively little
work on the implementation and pragmatic efficiency of many of these algorithms. Moreover, much of this
work has been for algorithms having regular communication patterns. More recently, attention has turned to
the many common algorithms with irregular communication patterns, particularly graph algorithms having
data-dependent communication.

One such problem is finding the connected components of a graph. Given a graph G = (V, E), where
V is a set of nodes (of size n) and E is a set of edges (of size in), the connected components of G are the
sets of nodes such that all nodes in each set are mutually connected (reachable by some path), and no two
nodes in different sets are connected. While this definition makes sense for both directed and undirected
edges, the usual assumption for this problem is that edges are undirected.' This problem is most common
in vision, to group pixels during image analysis, in physics, as part of the Swendsen-Wang algorithm for
cluster identification [20], and VLSI design, for net extraction from circuit masks. For example, in vision, it
is so important that some have even proposed specialized hardware for this algorithm, e.g., [23].

There has been much theoretical work on PRAM algorithms for finding the connected components of a
graph, some of which are provably work-optimal. Much less work has pursued the pragmatic aspects of these
algorithms. This paper compares implementations and provides opurmizations of three algorithms, those
of Shiloach and Vishkin [19], Awerbuch and Shiloach (A&S) [2], and a "random mate" (RM) algorithm of
Blelloch [7]. The former two algorithms are quite similar and require O(m log n) work. The latter randomized
algorithm uses the random mating of Reif [18], combined with the graph contraction of Phillips [17]. This
algorithm is also 0(m log n) work in the worst case, although for many classes of graphs, including planar
graphs, it is 0(m) with high probability.

Obviously, there are many other algorithms that could be added to this comparison. These algorithms
were chosen because of their simplicity and applicability to all classes of graphs. In contrast, the numerous
algorithms in use in physics and vision typically only work on grids2 . They also mesh stylistically with the
NESL language in that they use concurrent reads and writes and are not specialized to a single communication
architecture.

Two measures are used for making comparisons. Execution times on a Connection Machine 2 are given
for the algorithms, using various sizes and classes of graphs. The random mate algorithm and the optimized
A&S and S&V algorithms contract the graph and allow a machine-independent metric, the remaining number
of edges.

The original presentation of the A&S algorithm is particularly inefficient because it doubles the size of the
graph. After eliminating this inefficiency, the A&S variants generally outperform their S&V counterparts by ti
a margin of approximately 5-10%. The remaining optimizations on these algorithms improve the algorithms
by another factor of 2-3, depending on the structure of the graph. A modest optimization for random 1 "

mate gives a speedup of about 5%. The random mate algorithms are theoretically superior to the S&V and
A&S algorithms on some classes of graphs such as planar graphs. Furthermore, they are generally better in
practice on most graphs, with the exceptions of small graphs and dense graphs (at least within the available
memory size).

Code is given for the algorithms in the data-parallel style in the language NESL (Version 2.6). NESL [1
syntax is similar to that of Standard ML, with data-parallel primitives corresponding to concurrent reads -]
and writes.

The remainder of the introduction outlines the data-parallel paradigm and the NESL language, in par-
ticular. Section 2 describes the basic algorithms, while Section 3 describes modifications to these algorithms.

'Here, only the random mate-based algorithms require this assumption. ALU2S

2The Swendsen-Wang algorithms are based on breadth-first search, which does work on all graphs. 01

1I

Sections 4 and 5 describe the experiments and a summary of the results.

1.1. Data parallelism

The more commonly used models of parallelism feature multiple threads of control and are collectively known
as control parallelism. Typically, a program can create an unbounded number of subprocesses communicating
to each other in arbitrary patterns and each using different information such as separate control stacks,
program counters, and local data. This flexibility can complicate programming beyond comprehension and
lead to problems when debugging.

In contrast, data parallelism limits the programmer to a model of a single thread of control. The
parallelism is constrained to replicating the thread of control over a collection of data. For example, two
k-sequences of data would be stored, at least conceptually, so that the each of the corresponding elements
of the two sequences are placed on one of k (virtual) processors. A function can then be mappcd ova,
the collectioja ý what each processor performs the function on its local data. Applications are assumed to
have collections of data large enough for the bulk of a program's work to be encapsulated in such parallel
computations. Conventional uniprocessor programming idioms adapt easily to this restricted model, and
many parallel algorithms are naturally written in this style.

1.2. NESL

NESL is a strongly typed, functional, data-parallel language developed under the direction of Blelloch. Its
only parallelizable data collection type is the sequence, and it features efficient implementation of nested
sequences. Syntactically, it resembles Standard ML, and it uses a similar polymorphic type inference system.
Like many other functional languages, it has no primitive looping construct. Instead, recursion is used to
implement loops, and uses of "tail recursion" are compiled into the equivalent iterative code using jumps,
rather than procedure calls.

Any function may be mapped element-wise over a sequence, and it provides a fixed set of scan opera-
tions (also kn6wn as prefix sums) and arbitrary reorderings of sequences for communication. The primary
communication constructs are

" seq -> Lnd: Returns the values of the sequence at the indicated indices. Any given index may occur
more than once in the sequence of indices, corresponding to a concurrent read of the corresponding
value.

" seq <- ind-val: Each element of sequence iad-.1val is an pair of an index and value. Returns the
sequence that is like seq except that the given values are placed at the corresponding indices. Any
given index may occur multiple times, corresponding to a concurrent write.

I{exp : id, in seq,; ... I cond}: This syntax is based on standard set notation. In turn, bind
the identifiers to each value in the corresponding sequences. Evaluate the expression for each set of
bindings which satisfies the condition, and return a (packed) sequence of the results.

Implementations of NESL on hardware without concurrent reads and writes (CRCW) must simulate these
features in software. For a more detailed description of the language, see [6].

2. Previous Parallel Algorithms

This section outlines the three algorithms from which refinements were made. For more detailed explanations,
refer to the original papers as cited. The NESL implementations of these algorithms are given in Appendix A.

2

The first two algorithms are based on forming and combining trees of nodes, such that all nodes in a
given tree belong to the same connected component. These algorithms combine trees to find the maximal
such trees. The roots serve as representative elements of the trees, and the algorithms return the sequence
of the roots corresponding to each node.

The trees are represented by a sequence of the parent of each node. There are two basic operations,
hookiag and shoricutting on trees, as diagrammed in Figure 1. Hooking combines pairs of trees to form
larger trees if there is an edge between the two trees. Shortcutting flattens trees to improve the amortized
efficiency of hooking. When neither operation can be applied, all trees are of depth one, stars, and the trees
correspond to the maximal connected components. If shortcutting is performed often enough and hooking
is done as to avoid cycles, the algorithms require 0(logn) hooking steps, each of 0(m) work, so that the
algorithms require O(m logn) work.

treel tree2
tree3 = tree2 hooked onto tree I

shortcutted tree3

Figure 1: Hooking and shortcutting.

The third algorithm contracts the graph by combining nodes and edges such that the connected com-
ponents of the new graph are the same as those of the original. The graph is contracted until no edges are
left, so the remaining nodes correspond one-to-one to the connected components. Additional information is
saved to compute to which connected component belongs each of the original nodes. It requires 0(logm)
iterations, each of 0(m") work, where r4 is the number of edges in the graph remaining on the ith iteration.
The total work complexity is 0(m) if the ratio of edges to nodes in within a certain range. As Reif and
Gazit show, all other graphs can be transformed into the appropriate class in 0(m) work.

2.1. Shiloach and Vishkin

The algorithm of Shiloach and Vishkin [19] uses several data structures to represent the trees of nodes: the
parent relation of the tree, the parent relation from the previous iteration of the algorithm, and a sequence
indicating which iteration each node was last named a parent of some other node. (The cryptic name qs
for this last sequence is taken directly from S&V.) The n nodes are named by the integers 0 ... n - 1. The
parent relation is then a sequence of integers, where the iPh element of the sequence is the parent of node i.

The first step of each iteration shortcuts the trees and initializes the data structure qs for the iteration.

Next, two different hooking steps are used. Conditional hooking combines two trees so that the larger

3

numbered root is below the smaller. Unconditional hooking only hooks stagnant trees onto other trees. A
tree is stagnant if it has not been involved in shortcutting or conditional hooking on this iteration. The
latter kind of hooking is necessary to avoid a worst case of n - 1 itcrations, as fully described by S&V. It is
this test for a root being stagnant which uses the third piece of information encoding the tree.

A second shortcutting step simplifies the complexity analysis given by S&V. While it improves perfor-
mance, its use is not necessary to result in O(m logn) work.

The algorithm terminates if no node changes were made to the trees, as indicated by the qs sequence.
For the sake of clarity, the given code calculates the termination condition slightly differently than in S&V.

2.2. Awerbuch and Shiloach

The algorithm of Awerbuch and Shiloach [2] is a simplification of that of Shiloach and Vishkin. In particular,
unconditional hooking is simplified so that instead of hooking stagnant trees onto other trees, only stars can
be hooked onto trees. The advantage is that testing for membership in a star can be done without calculating
the extra data structure qs of S&V. Instead, the test uses only properties of the parent relation. On the
other hand, the new star membership test is relatively expensive because of communication costs. So, the
rooted tree is represented by a single parent relation.

However, as argued by A&S, for the algorithm's invariants to hold on the first iteration, an extra n
"dummy" nodes and n edges are added to the graph. These edges connect the ith original node with the ith
dummy node.

Also, the optional shortcut is eliminated (presumably for simplicity). The AS-..staxcheck routine is also
used for termination of the algorithm: it halts when all nodes are members of stars. At that point, the
parent of each node is the root of its connected component. Thus, the resulting control structure loops over
the two forms of hooking, shortcutting, and testing for the termination condition.

2.3. Random Mate

The random mate algorithm was originally an adaptation by Reif [18] of the S&V algorithm, replacing
both kinds of hooking with a single randomized version, called mating. In this step, each node is randomly
assigned one of two labels, plus or minus, with equal probability. Edges from positive to negative nodes
are selected, with the restriction that only one edge may be selected pointing from any given node. This
restriction is implemented via an implicit concurrent write which arbitrarily picks a single target for the
node.

This algorithm by Blelloch combines mating with the graph contraction of Phillips [17], so that each
successive iteration works with a smaller graph. The edges are contracted with the selected, or actit,e,
producing supernodes. The edges are contracted by renaming with the new supernodes and removing self-
edges, although because of conflicts, not necessarily all of the active edges are used for contraction. Thus,
these edges correspond to the parent relation of the previous algorithm. After the graph has been fully
contracted, the remaining nodes represent the connected components of the original graph, and correspond
to the roots of the trees formed in the previous algorithm. Figure 2 represents one of these iterations.

Next, the graph must be re-expanded, using the active edges, to propagate the name of these final
supernodes to the nodes of the original graph. For this purpose, the active edges of each iteration are placed
on the run-time recursion stack.

The implementation of the algorithm is given in Appendix A. The nodes of the graph are represented
by the endpoints of the edges. As mentioned, the algorithm is recursive, so that the active edges are placed
on the stack for use during expansion. The graph is expanded as the recursion stack unwinds, and the

4I

0 O0

nodes and active edges contracted nodes and shrunk edges

Figure 2: One iteration of contraction.

supernode relation returned from recursive calls and the active edges are used to propagate the name of each
root to all nodes in its component.

An unconventional feature of this version of partitioning (RX-partition) is that the mating is not truly
random. The "randomness" is generated by using on the ith iteration the (i mod log12 n)th bit of the (arbi-
trary) nod,' numbers. A true pseudo-random alternative (RM3) is given in the Appendix B, but experiments
indicate the given code to be better in practice because this partitioning with this method require- much less
time-consuming communication. Furthermore, it produces partitions with similar numbers of active edges,
except that the randomized version typically finds larger partitions on very sparse graphs.

3. Modifications

All of the new algorithms are modifications of the previous three. Major changes are made to the A&S and
S&V algorithms, drastically reducing the constant on the c(m log n) term of the O(m log n) complexity. A
modest improvement is also given for random mate.

3.1. Shiloach and Vishkin-based

The following changes are made to the original algorithm (SVI) and are further described in this section.

"* Shortcutting more aggressively. (SV2)

"* Using unconditional hooking less often. (SV3)

"* Contracting the edges of the graph, as in random mate. (SV4)

For simplicity, each algorithm includes all previous optimizations, so that, for example, SV4 uses all of these
modifications.

To further reduce the depth of the trees, extra shortcutting may be performed each iteration. Flatter
trees allow the termination condition to be detected earlier. For a given (finite) tree, only a finite amount
of shortcutting is useful, until a fixed point is found. The given heuristic closely estimates the number of
shortcuts needed to reach this point.

An alternative is to guarantee that the maximal amount of shortcutting is performed. That can be done
by repeatedly shortcutting until the operation does not further change the graph, as in shortcut-max. In
practice, however, the improvement resulting from the graph contracting more quickly is more than offset

5

by the higher cost incurred by testing whether the shortcut operation modified the graph.3

Unconditional hooking is only necessary in a small percentage of cases. Empirical evidence suggests that
a relatively small number of edges are ever used by the step. Only executing the step occasionally (here,
every third iteration) improves performance, while still avoiding the need for a linear number of iterations.
Also, since the number of live edges is by far the greatest during early iterations, it is best to avoid using
the step then.

The next modification is an adaptation from the random mate algorithm. On each iteration, the live
edges are replaced by renaming the endpoint with the parents of the endpoints, and then eliminating self-
edges. In this case, aggressive shortcutting is especially beneficial since flatter trees result in more edges
being contracted.

Since a node's parent is in the same connected component as the node, if there was a path between two
nodes using the old edges, there is still a path between the nodes using the new live edges and the parent
relation. Thus, all information necessary for finding the connected components remains. Even though the
number of live edges monotonically decreases, the complexity of each iteration is still bounded by the number
of nodes, because of the shortcutting operations.

However, this modification is only an improvement for some classes of graphs. In particular, it is not
beneficial if the number of edges in the graph is much larger than the number of nodes (e.g., m • n2). Since
0(n) edges and nodes are eliminated per iteration, in this case a proportionally small fraction of the edges
are being removed, and the cost of the operation overshadows the benefits.

Additionally, if there are no live edges left, it is clear that further iterations of the algorithm perform
only shortcutting, so a special case is made of this to avoid overhead on the last iterations.

For brevity, these changes are grouped together in the presentation, as shown in the following code for
the main loop. However, each is independently useful.

function SV-alg4(psqs,es,iter) =
if zerop(#es) then shortcut-max(ps)
else let (psl,qsl) = SV-init(ps,qs,iter);

(ps2,qs2) = SV-cond-hook(psl,ps,qsl,es,iter);
ps3 = if uncond.hookp(iter) then SV-uncond-hook(ps2,qs2,es,iter) else ps 2 ;

in if not(any({q == iter : q in qs2})) then ps3
else let ps4 = shortcutn(ps3,shortcut-heuristic(#es));

in SV-alg4(ps4,qs2,shrink-edges(ps4,es),1+iter) $

3.2. Awerbuch and Shiloach-based

The following changes are made to the original algorithm (ASI) and are described further in this section.

"* Modifying the first iteration, so that dummy nodes and edges are unnecessary. (AS2)

"* Optimizing detection of the termination condition. (This optimization is later made redundant by the
final modification.) (AS3)

"* Shortcutting more aggressively. (AS4)

"* Using unconditional hooking less often. (AS5)

3 0n the other hand, by guaranteeing that all trees are stars, further optimizations could be made. One precondition of
conditional hooking is trivially satisfied, and unconditional hooking is entirely unnecessary. This is fturther pursued in [10].

6

* Contracting the edges of the graph, as in random mate. (AS6)

The most glaring efficiency problem with the original presentation is the addition of dummy nodes and
edges, effectively doubling the size of the graph. These nodes and edges are used only on the first iteration
to establish the tree structure expected by the hooking steps. After the first iteration, they will always be
at the bottom of the trees and be irrelevant. In order to eliminate these dummy nodes and edges, one can
use specialized versions of the hooking steps (The functions AS..lone-cond-hook and AS.lone-uncond-hook
in Appendix B.) on the first iteration.

Another bottleneck is the star membership test, which is relatively expensive. As shown in the code
below, its use as a test for termination of the main loop can be specialized to AS.-tarcheck-all. which
eliminates most of the communication costs of AS.starcheck.

%, Equivalent to all(AS-starcheck(ps)), but faster. %.
function AS-starcheck.all(ps) = all({p == gp : p in ps; gp in shortcut(ps)}) $

The remaining modifications are the same as made in Section 3.1 for the similar S&V algorithm. The
main loop of the resulting algorithm is shown below.

function AS-algd(ps,es,iter) =
if zerop(#es) then shortcut-max(ps)
else let psi = AS-cond.hook(ps,es);

ps2 = if uncond-hookp(iter) then ASuncond.hook(psl,es) else psi;
ps3 = shortcut-n(ps2,shortcut-heuristic(#es));
est = shrink-edges(ps3,es);

in ASalgf(ps3,es1,i+iter) $

3.3. Random Mate-based

The one optimization of random mate is to ensure that each iteration has a non-zero number of active edges
so that the algorithm does not loop twrough the entire M-reduce-grapL routiije without khe graph changing,
as in the following function.

function RM-active-edges2(es,bits,step) =

let aes = {e : e in es; active in RM.partition(es,step) I active};
newstep = rem(step+1,bits);

in if zerop(#aes) then RM-active-edges2(es,bits,newstep)
else (flip.edges(aes,{nthbit(from,step) : from in edges-froms(aes)}),newstep) $

A more general test would require that a "significant" number of active edges be selected in order to use
the partition. But then the algorithm sometimes discards many partitions until one is used, and in practice.
this did not improve the algorithm.

4. Testing Method

To test the performance and the algorithms, four different classes of graphs were used. Test runs used subsets
of these classes of graphs generated by randomly choosing a uniformly distributed fraction of each graph's
edges.

7

"* Subsets of two-dimenwional toroidal grids: Each vertex has a subset of the four neighbors of such a
grid.

"* Subsets of three-dimensional toroidal grids: Each vertex has a subset of the six neighbors of such a
grid.

"* "Tertiary" graphs: Each vertex has three neighbors picked uniformly at random.

"* Subsets of complete graphs: Each vertex is connected to a subset of all other vertices. To some degree.
these represent the general case.

Grid-based graphs are commonly used in both vision and physics. Subsets of complete graphs ("randomn
graphs") represent the most general, and frequently worst, case. Tertiary graphs are a representative inter-
mediate case.

For the grid-based graphs, two different fractions of edges were used, resulting in graphs which are or
are not highly connected. Graphs having more (less) than two edges per vertex are (not) highly connected,
since for the graph to be fully connected, each vertex must have at least two edges. So, for 2D grids, using a
random subset of more than half of the edges will result in a relatively highly connected graph. The testing
here uses subsets of 30% and 60% of the edges. Similarly, for 3D grids, we choose fractions less and greater
than one third: 20% and 40%. For complete graphs, fixed fractional subsets are again used. However, since
the number of edges increases quadratically, larger graphs are increasingly connected.

We now define some standard terms of graph theory. These properties of graphs will effect the perfor-
mance of the algorithms and allow us to explain our results.

The degree of vertices in the graph is the number of incident edges at each vertex and is a measure of the
connectivity of the graph. Vertices in two-dimensional grids have a degree of four; three-dimensional grids,
six; tertiary graphs, at most six; and random graphs, up to n.

An edge separator of a graph is a set of edges which, if removed, will separate the graph into independent
subgraphs of approximately the same size. The size of the separators of a graph is another measure of
connectivity. The divide-and-conquer strategy of random mate tends to perform well on graphs with small
separators. Two-dimensional grids have separators of size O(V'/): three-dimensional grids, Q(3/r/n); tertiary
graphs, 0(n); and random graphs, O(n).

The diameter of a graph is the length of the longest of the shortest paths between all vertices in the graph.
A large diameter indicates that the trees of the algorithms will be deep, so that the effects of shortcutting will
be more significant. Two-dimensional grids have diameters of size O(.x/¶); three-dimensional grids, O(r'n).
Tertiary and random graphs typically have much smaller diameters, e.g., the expected size for tertiary graphs
is O(log n).

Recall thaL the A&S and S&V algorithms assume that eacih cdge is listed twice. nointed in each direction,
whereas the random mate algorithms need only one copy of each edge. So, the former algorithms must use
twice as many edges to represent the same graph.

The NESL code was executed 4 on one quarter of a 32K processor Connection Machine 2, i.e., 8K pro-
cessors each with 32KB of local memory per processor. Preliminary timings obtained on a Cray Y-MP have
entirely similar relative results.

'NESL is currently compiled to VCODE which is then interpreted.

8

5. Experimental Results

The following plots compare 0-.. performance of the algorithms on such graphs. Most plots display average
running times of several u,,arithms for graphs, ranging in size upto as bounded by the available memory.
Execution times are taken as the average over ten trials each, whereas edge and node counts are taken from
single trials.

Fig, re, 3 and 4 show the percentage of the original edges that remain after each iteration of the optimized
A&S ar . kM algorithms. Naturally, this uses the version of A&S which does contract the edges. These plots
use the largest graphs allowed in the available memory, although smaller graphs produced similar results.

2d60 -

)d20 E i20

300~ 104 Ud-

30 tI- -- 40

20

'. x n-

4 2 0 &. ... ~:;i, 5 2 5 10 !5 40 40

Figure 3: Percent of original edges remaining after Figure 4: Percent of original edges remaining after
each iteration of AS6 each iteration of RM2

For tertiary, and especially random graphs, the random mate algorithm uses relatively few iterations to
terminate, but initially contracts the graph very little. Thus, these few iterations are relatively expensive.
For the grid-based graphs, the early contraction is very quick, but many iterations are needed to eliminate
the remaining edges, particularly for the more highly connected graphs.

On average, half of the remaining edges are active on each iteration of random mate. As a result, between
a quarter and a half of the remaining non-singleton nodes are removed each iteration, depending on the class
of graph. And as shown by [17], planar graphs have at most a constant multiple more --Ages than nodes.
And since random mate contracts planar graphs into planar graphs, the number of edges decreases at a
similar rate to that of the nodes. This plot empirically confirms that fact, and indicates that the same likely
holds for three-dimensional grids.

For random graphs, again about the same number of edges as nodes are contracted during the early
iterations. But, this is only a small fraction of the number of edges, which is initially proportional to the
square of the initial number of node, rhus during contraction, the graph becomes increasingly dense until
it is almost fully connected.' But, the the number of remaining edges is bounded by the square of the
number of remaining nodes. This upper bound now becomes relevant, and the the edges quickly contract.
For tertiary graphs, a similar phenomenon is seen, except that since the initial number of edges is only a
constant multiple of the initial number of nodes, the early iterations contract a greater fraction of the edges.

5A similar mating algorithm is used by Gazit [8] to transform sparse graphs into dense graphs.

9

The space complexity of random mate is dominated by the space needed for storing the active edges
on the stack.' With high probability, this is proportional to the sum over all iterations of the number of
remaining graph edges. For grid-based graphs, the geometric decrease in the number of edges indicates
that space complexity is a constant multiple of the number of edges. In general, it is at least bounded by
O(m log m), the size of the edges multiplied by the number of iterations, although a tighter bound might be
provable. Compare this to the lower space complexity O(m) of the tree-based algorithms. The total number
of active edges stored could be bounded by rn by only saving those active edges used for contraction.

The plot for the optimized A&S algorithm is very similar. However, note that it uses a much smaller
number of iterations, partly because each iterations performs several shortcut operations.

Figures 5 and 6 compare the optimized algorithms to each other on the toroidal grids. The formier
compares the optimized S&-V, A&S. and RM algorithms on two dimensional grids, using 30%X of the edges:
it also compares the same A&,S and HM algorithms using 60% of the edges. The latter compare-, these
algorithms on the three dimensional grids using 20% and 40% of the graph edges.

25
S14-2d30 -
AS6-2d30
RM2-2d30 0
AS6-2d60 -

20 RM2-2d60 7-

-----------..-.--------

A 15

AX

10
1.

00

0 200000 400000 600000 800000 le-0
6

1.2e-06 1.4e-06 1 6e-0
6

18.e-06
number of nodes

Figure 5: Optimized algorithms on 2D grids, 30% and 60%

Not surprisingly, the similar S&V and A&S algorithms result in very similar running times, although the
latter is up to 23% faster on the graphs tested here. Random mate outperforms both of the other algorithms
on all but the smallest of grid-based graphs. Within the range of sizes shown here, RM is up to 288% faster
than A&S. Since random mate has a better expected work complexity for these graphs, this comparative
advantage grows with graph size.

Figure 7 again compares the optimized S,-V and A,-S algorithms, as well as all of the RM algorithms
on "random" graphs. Here, 2% of the edges of the complete graphs are used. Recall that RM3 uses the
pseudo-random partitioning, which is clearly very costly on these graphs. In fact., this holds for all graphs
tested. While random mate is still faster than both A&S and S&V, its advantage is slimmer than with the
grids. Random mate is consistenly about 50% faster than AS.

Similarly, Figure 8 uses tertiary graphs to compare all of the AS algorithms described. Each of the first
five algorithms consistently outperforms the previous algorithms. While not plotted here, this also holds
for the other classes of graphs, so that each of the corresponding modifications is indeed an optimization.
However, the final modification, that of contracting the edges of the graph, is obviously not beneficial is this

t
For simplicity, we are here assuming that n < m. In general, n shou!d be added to each of these space complexities.

10

30
SV4-3d20 --
AS6-3d20 --
FtM2-3d20 0

2S AS6-3d40 C-
25G2-M3d40 -

20

u

0

U

0200000 400000 600000 800000 le-06
number of nodes

Figure 6: Optimized algorithms on 3D grids. 20% and 40%

25

SV4-rand2 -
AS6- r-•dI
-i -r.nd2

-rand

0 0

10

0 1000 2000 400 4000 6000 60 800 000 8.000
number of nodes

Figure 6: Optimized algorithms ond 3Dl agoridhs. 20% rando gra0% 2

2O it•'$.rand2 U

* ,s

0J 1

oo10

5 a-"

- - .'

0 100 2000 3000 4000 5000 6000 71000 8000
number of nodes

Figure 7: Optimized algorithms and all RM algorithms on random graphs. 2%

11

100

AS1 i.
AS2 -.-
AS3 a
AS4 C-.-

,0 AS5 "•-
AS6-E

60

0

20

z j / " .1"
20

0 50000 100000 150000 200000 250000 300000 350000
number of nodes

Figure 8: All A&S algorithms on tertiary graphs

case. As previously discussed, contracting the edges is not cost-effective for the relatively dense tertiary and
random graphs, while it is an improvement for the grid-based graphs.

6. Conclusions and Future Work

Previous work on parallel algorithms for connected components has concentrated on theory and largely
ignore pragmatics. This paper has investigated implementations of algorithms by Awerbuch and Shiloach,
Shiloach and Vishkin, and Blelloch. We have shown that the published versions of the former two algorithms
are inefficient, as compared to the latter.

But, several modifications have been presented to significantly improve both the A&S and S&V algorithms
by constants factors, with a overall speedup factor of approximately five for A&S. Two different optimized
A&S algorithms are given, such that one (AS5) is better for the dense tertiary and random graphs, and the
other (AS6) is better for the grid-based graphs. Nevertheless, the random mate algorithm is faster than all
of the other algorithms tested here, for all but the smallest of graphs.

For a more detailed analysis, accurate cost models of the algorithms should be developed. In particular,
this would allow a theoretical basis for improving the several heuristics used.

While the edge-contracting modification to the S&V and A&S algorithms is adapted from random mate,
further combining of the algorithms might be useful. For example, the more expensive pseudo-random
partitioning could be used only on the final iterations of random mate, when its higher cost may be offset
by the better partitions it generates then. Or, iterations of random mate and A&S could be interleaved
to combine strengths. Bounding the maximum number of A&S iterations would retain the 0(m) work
complexity of random mate. Gazit [8] uses one such combination, by using a mating algorithm to preprocess
sparse graphs, before using an algorithm based on S&V.

One such hybrid algorithm has been implemented, which incorporates both shortcutting and graph
contraction. Results indicate that it consistently outperforms all algorithms tested here [10].

Another possible modification for random mate, suggested by Dafna Talmor, addresses the worst case

12

of random mate of many active edges pointing io a single node. On each iteration, the active edges would
be selected, and the edges contracted as presently done, which would only use one edge in this worst case.
Next, those unused active edges would be flipped and serve as the active edges for a second contraction.

Acknowledgements

Thanks go to Guy Blelloch for lots of help with the algorithms and NESL, and Jay Sippelstein for help with
NESL.

A Code of original algorithms

The following are common routines used by the algorithms.

function edges.froms(es) = {from : (from,to) in es} $
function edges.tos(es) = {to (from,to) in es} $

function parents-edges(ps,es) =
{(pfrom,pto) : pfrom in ps -> edges.froms(es); pto in ps -> edges.tos(es). $

function shrink.edges(ps,es) =
{(pfrom,pto) : (pfrom,pto) in parents -edges(ps,es) I pfrom,/= pto} $

7% Convert edges from undirected to directed %.
function direct-edges(es) = es ++ flip-edges(es,{t : es}) $

function flip.edges(esflips) =
{(select(flip,to,from),select(flip,from,to)) : (from,to) in es; flip in flips} $

function shortcut(ps) = ps -> ps $

The following is the original S&V algorithm.

function SV.init(ps,qs,iter) =
let gps = shortcut(ps) in (gps,qs <- {(gp,iter) : gp in gps; p in ps I gp / p}) $

function SV.cond.hook(neupsps,qs ,es,iter)
let newp-esi = parents-edges(newps,es);

nerp-es2 = {(newpfrom,newpto) (newpfrom,newpto) in nevp.esl;
pfrom in ps -> edges-froms(es)

I (newpfrom == pfrom) and
(neipto < newpfrom)};

in (nerps <- nerp-es2,qs <- {(newpto,iter) : newpto in edgestos(nevp_es2)}) $

function SV.stagnantp(p,gp,qp,iter) = (p == gp) and (qp < iter) $

function SVuncondhook(ps,qs, es,iter) =

13

let p.s = pa~rents-e.dges~ps,ea);
in pa <- {Cpfron,pto) Cpfrom,pto) in peas;

gpfrom in pa - edges-.froma(pea);
qpfron in qa - edges .froms(pes)

ISV-s.tagnantp~pfroa~gp-from,qpfroa,iter) and (pfroz pto)} $

.anctiont SV-.a~lgi(pa,qa,es,iter) =
let Cpal,qai) = SV-.init(pa,qa~iter);

Cps2,qs2) = SV-.cond-.hook(pal,ps,qal,ea,iter);
ps3 = SV..untcond-.hook~pa2,qs2.es~iter);

in it not~any({q ==iter :q in qa2})) then ps3
else SV-.a~lgi(ahortcut(ps3) ,qs2,es,l+iter) $

% find connected components of graph using Sky's aig. %
function cc..SVi~ea,num..na) =
SV..algl(index(nuza.na) ,diat(O,num..ns) ,direct-.edgea(es) ,O) $

The following is the original A&S algorithm. Included in the comments of the provided code are Awerbuch
and Shiloach's own descriptions. 7

% If G~i) = D(i) and D(i) > D~j) then DOW~)): D(j) %
function AS..cond-.hook(ps,es) =
let pea =parents-edges~ps,es);
in pa <- {(pfrom,pto) Cpfrom,pto) in peas; gpfrom in pa -> edges-.froms(pes)

I(gpfrom == pfrom) and (pfrom >-pto)} $

%. ST(i) :=TRUE; If D~i) \G~i) then ST(i),ST(G~i)) :=FALSE; ST(i) :=STCG~i)) %.
function AS-.sta~rcheck(ps)=
let gpa shortcut(ps);

sta (P p= gp p in pa; gp in gpa} <- {(gp,f) :p in pa; gp in gps I p/ gp};
in sts -> gpa $

%. It i belongs to a star and D(i) /= D~j) then D(D~i)) :=D~j) %.
function AS-.uncond-.hook(pa~ea) =
pa <.- {(pfrom,pto) (pfrom,pto) in parents-.edges(pa~es);

instarp in AS-..tarcheck(ps) -> edges-.froms~es)
Iinstarp and (pfrom /= pto)} $

function AS-algl(ps,es,iter) =
let pal. = AS-.cond-.hook(ps,es);

ps2 = AS-.uncond-.hook(psl,es);
in if all(AS-.starcheck~ps2)) then ps2 else AS-.algi~shortcut~ps2),ea,1+iter) $

%. For all nodes i, add node il (= i + nuzn..us) and add edge (i,i') %
function add-dAummy-.nodes(ea,nua..ns) =
(es ++ {(n,n '+ num-.ns) :n in index(nu1m-.ns)},num-.ns + num-.na) $

function remove..Aummy-.nodes(ps) = take(ps,#pa / 2) $

'T hey use the naming scheme of D(i) as the parent of the source node of the unnamed edge, and G(j) as the grandparent
of the edge's target node.

14

function cc.AS1(es,nu,,_na) =

let (newedges,neunua.ns) = add-du-my.nodes(es,num-ns);
in ruove-duumy-nodes(AS-algl (index(newmum.na), direct_ edges(neuedges), O)) $

And the following is the code for the original random mate algorithm.

function R)Lreducegraphl (ns, es,bits,step) =

if zerop(#ea) then ne
else let % contraction %

ass = RMNactive-edgesl(es,step);
neons = us <- ass;
newedges = shrink-edges(ne._ns,es);
old-roots = R1Lreduce-graphl(nev-ns,nevedges,bits ,rem (step+ 1,bits));

in % Compute new roots -- expansion %
old-roots <- {(afrom,v) afrom in edges-froms(aes);

v in old-roots -> edges-tos(aes)} $

function RM-partition(es,step) =
{nthbit(from,step) xor nthbit(to,step) : (fromto) in es} $

function RM-active.edgesl(es,step) =
let ass = {e : e in es; active in RM-partition(es,step) I active};
in flip.edges(aes,{nthbit(from,step) : from in edges -froms(aes)}) $

function nthbit(n,bit) = zerop(lshift(l,bit) and n) $

% Find the connected components by reduce-graph %
function ccRMI(es,num-ns) =
if plusp(num.na)
then RM-reduce.graphl(index(num-ns), es ,trunc(log(float (num-ns) ,2. 0)) + 1,0)
else 0 int $

B Supplementary Modifications Code

The following is supplementary NESL code for the modifications to the algorithms.

function shortcut.n(ps,n) =
if n <= 0 then pa else shortcut.n(shortcut(ps),n -1) $

function shortcut.max(ps) =
let gps = shortcut-n(ps,4);
in if all({p == gp : p in ps; gp in gps}) then gps else shortcut.max(gps) $

%. Heuristically estimate number of shortcuts until only stars left %.
function shortcut-heuristic(numedges) =
if zerop(numedges) then 1 else min(1,trunc(log(float(numedges),10.0)) - 1) $

% Test if should do uncond-hook this iteration
uncond-hook expensive on early iterations %

function uncond.hookp(iter) = zerop(rem(I+iter,3)) $

15

The following functions are for the A&S algorithms.

function cc-1.S6(es,zuus..ns)
lot ps - index(num-.ns);

as = direct-o.dges(es);
psl = AS-.lone-.cond-.hook(ps,es);
ps3 =shortcut-.n~psl,shortcut-.heuristicC*es));
es1 = shrink-e.dges(ps3,es);

in AS-.alg6(Rs3,ez1,0) $

% Starchecking for 1st iter. IF no dummy nodes %
function AS-lonecheck(ps)
let nus index(*ps);
in (p ==n p in ps; n in ns} <- {Cp,f) :p in ps; n in us I p u) n}$

%. It G(i) =D(i) and D~i) > D(j) then DOW~)): D(j)
Use 1st iter. IF no dummy nodes, when G(i) = D(i). %

function AS-.lone-.cond-hook~ps ,es) =
ps<- {Cpfrom,pto) :(pfrom,pto) in parents..edges(ps,es) I pfrom > pto} $

0

%. If i belongs to a star and D(i) /= D~j) then DOW~)): D~j)
Use 1st iter. IF no dummy nodes %.

funct ion AS-.lone-.uncond-.hook~ps,es)=
pa <- {Cpfrom,pto) Cpfrom,pto) in parents-.edges~ps,es);

in-.starp in AS-.lonecheck(ps) -> edges-.froms~es)
Iin...starp and (pfrom /= pto)} $

The following is a truly pseudo-random version of partitioning. Note the large amount of communication
necessary. The extra argument flip..nodeps is a sequence of the length of the number of nodes in the
origina! graph, which is allocated once at the b~ginning of the algorithm.

% Randomly partition edge end-.points into two halves
Needs #flip...nodeps == max nndenum for efficiency %

funct ion R)Lpartition3Ces ,fli'...--,IF ps) =
let flip..nodeps = flip-.nodeps <- {Cfrom,zerop(rand(r))) :r in dist(2,#es);

from in edges..froms(es)};
flip-.nodeps = flip..nodeps <- {(to,zerop(ra~nd~r))) :r in dist(2,#es);

to in edges-.tos~es)};
in ({flipfrom xor flipto :Cflipfrom,flipto) in parents..edges~flip-.nodeps,es)},

flip..nodeps) $

funct ion RM-active-.edges3(es ,flip..nodeps)=
let Cactives ,flip..nodeps) = RW..partition3Ces ,flip-nodeps);

aes = {e e in es; active in actives I active};
in if zerop(#aes) then RMtactive-.edges3(es,flip..nodeps)

else flip-.edges~aes,flip-.nodeps -> edL' -'rev-s~aes)) $

References

[1] Agrawal, Ajit; Nekiudova, Lena; and Lim, Willie. A parallel O(log n) algorithm for finding connected
components in planar images. Technical report TMC-122. Thinking Machines Corp. February 1987.

16

[2] Awerbuch, B. and Shiloach, Y. New Connectivity and MSF Algorithms for Ultracomputer and PRAM.
In Proceedings of the International Conference on Parallel Processing, pages 175-179. 1983.

[31 Das, S. K.; Deo, N.; and Prasad, S. Parallel graph algorithms for hypercube computers. In Parallel

Computing, vol. 13, no. 2, pages 143-158. February 1990.

[4] Blelloch, Guy E. Vector Models for Data-Parallel Computing. MIT Press, Cambridge, MA, 1990.

[5] Kao, Ming-Ying and Shannon, Gregory E. Linear-processor NC algorithms for planar directed graphs.
Technical report 306. Indiana University, Bloomington, Computer Science Dept. 1990.

[6] Blelloch, Guy E. NESL: A Nested Data-Parallel Language. Technical Report CMU-CS-92-103,
Carnegie Mellon University, January 1992.

[7] Blelloch, Guy E. Unpublished CVL code. 1990.

[8] Gazit, Hillel. An Optimal Randomized Parallel Algorithm for Finding Connected Components in a
Graph. In SIAM Journal of Computing, Vol. 20, No. 6, December 1991.

[9] Gopalakrishnan, P. S.; Ramakrishnan, I. V.; and Kanal, Laveen N. An efficient connected components
algorithm on a mesh-connected computer. Technical report TR-1467, University of Maryland. 1987

[10] Greiner, John; Blelloch, Guy. Data-Parallel Connected Components Algorithms. To appear in High
Performance Computing, ed. Gary Sabot.

[11] Hagerup, T. Optimal parallel algorithms on planar graphs. In Information and Computation. vol. 84,
no. 1, pages 71-96. January 1990.

[12] Hambrusch, S. and TeWinkel, L. A study of connected component labeling algorithms on the MPP. In
Proceedings of the Third International Conference on Supercomputing, vol. 1, pages 477-483. May 1988.

[13] Han, Y. and Wagner, R. A. An efficient and fast parallel-connected component algorithm. In Journal of
the Association for Computing Machinery, vol. 37, no. 3, pages 626-642. July 1990.

[14] Lim, Willie; Agrawal, Ajit; and Nekludova, Lena. A fast parallel algorithm for labeling connected com-
ponents in image arrays. Technical Report TMC-124, Thinking Machines Corp. April, 1987.

[15] Lim, Willie. Fast algorithms for labeling connected components in 2-D arrays. Technical report TMC-
125, Thinking Machines Corp. November, 1987.

[16] Paradlos, Panos M. and Rentala, Chandra S. Computational aspects of a parallel algorithm to find the
connected components of a graph. Technical report CS-89-01, Pennsylvania State University Depart-
ment of Computer Science. 1989.

[17] Phillips, Cynthia A. Parallel Graph Contraction. In Proceedings of the ACM Symposium on Parallel
Algorithms and Architectures, pages 148-157. June 1989.

[18] Reif, John H. Optimal Parallel Algorithms for Integer Sorting and Graph Connectivity. Technical Report
TR-08-85, Harvard University, March 1985.

[19] Shiloach, Yossi and Vishkin, Uzi. An O(log n) Parallel Connectivity Algorithm. In Journal of Algorithms,

pages 57-67, 1982.

[20] Swendsen, R. H. and Wang, J.-S. In Physical Review Letters, vol. 58, no. 86. 1987.

[21] Woo, Jinwoon and Sahni, Sartaj. Hypercube computing: Connected components. Technical report TR-
88-50, University of Minnesota Computer Science Department. July 1988.

[22] Yang, Xue Dong. An improved algorithm for labeling connected components in a binary image. Technical
report 89-981. Cornell University Department of Computer Science. March 1989.

[23] Yang, Xue Dong. Design of fast connected components hardware. In Proceedings of the Computer Society
Conference on Computer Vision and Pattern Recognition, pages 937-944. 1988.

17

